Uniqueness from discrete data in an inverse spectral problem for a pencil of ordinary differential operators
نویسندگان
چکیده
We prove a pair of uniqueness theorems for an inverse problem for an ordinary differential operator pencil of second order. The uniqueness is achieved from a discrete set of data, namely, the values at the points −n2 (n ∈ N) of (a physically appropriate generalization of) the Weyl– Titchmarsh m-function m(λ) for the problem. As a corollary, we establish a uniqueness result for a physically motivated inverse problem inspired by Berry and Dennis (‘Boundary-conditionvarying circle billiards and gratings: the Dirichlet singularity’, J. Phys. A: Math. Theor. 41 (2008) 135203). To achieve these results, we prove a limit-circle analogue to the limit-point m-function interpolation result of Rybkin and Tuan (‘A new interpolation formula for the Titchmarsh– Weyl m-function’, Proc. Amer. Math. Soc. 137 (2009) 4177–4185); however, our proof, using a Mittag-Leffler series representation of m(λ), involves a rather different method from theirs, circumventing the A-amplitude representation of Simon (‘A new approach to inverse spectral theory, I. Fundamental formalism’, Ann. Math. (2) 150 (1999) 1029–1057). Uniqueness of the potential then follows by appeal to a Borg–Marčenko argument.
منابع مشابه
A Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملOn inverse problem for singular Sturm-Liouville operator with discontinuity conditions
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 94 شماره
صفحات -
تاریخ انتشار 2016